A Project Presentation

on

Fuzzy-Genetic Approach to Optimize Machining Process Parameters of AWJM

By Mahesh Todkar M.Tech. II (ME093119)

> Guide Dr. N. Venkaiah

Contents

- R Introduction to AWJM
- 🛯 Literature Review
- ♂ Objectives of Project Work
- R Development of fuzzy model
- Automatic selection of process parameters using GA
- Results and Discussions
- References

Introduction to AWJM

Advanced Machining Process

Real Fine jet of ultrahigh pressure water and abrasive slurry

Real First initiated by Franz in 1968 and was first introduced as a commercial system in 1983

R Distinct advantages:

- To cut electrically non-conductive as well as difficult-to-machine materials
- Multi-directional cutting capacity
- Mo thermal and deformation stresses
- Recycling of abrasive particles, etc.

Introduction to AWJM

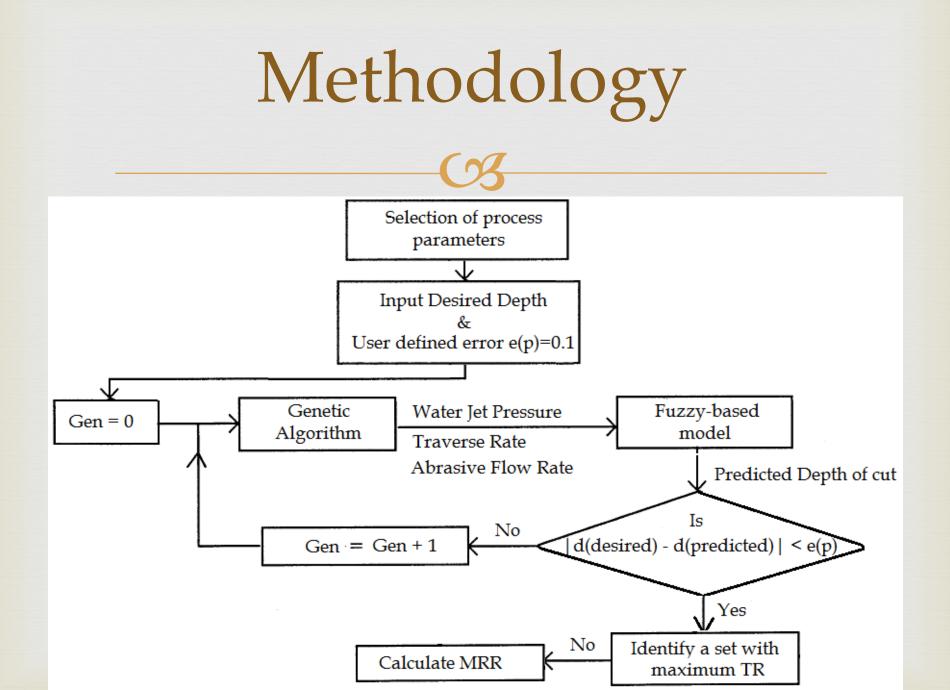
Applications:

- General Factory applications: to cut difficult-to-cut materials, in pattern cutting, etc.
- S Food industry: to cut breads, in trimming fats from meats, etc.
- Cleaning, etc.
- **R** Other Key Features:
 - ☑ Positioning accuracy: ± 0.003 mm
 - Cutting accuracy: ± 0.01 mm (Depending on material and thickness)
 - 🛯 Kerf width: 0.3 mm
 - Surface quality: equivalent to Ra1.6 micro meters
 - Maximum work piece size: 1000 x 600 mm

Literature Review

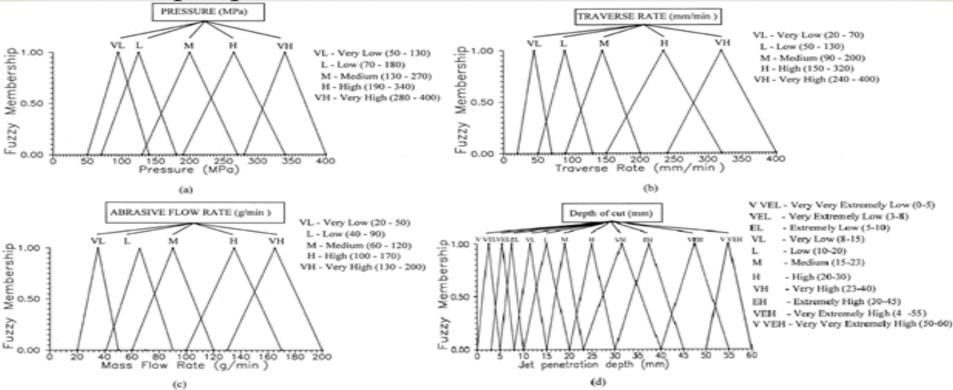
ℴ Kovacevic and Fang [1994]

- 🛯 Used Fuzzy Rules
- Cost Employed an iterative procedure
- - Hybrid Approach of Fuzzy Logic and Genetic Algorithm
 - 🛯 Not Disclosed Fuzzy Rules used


Aggarwal and Singh [2005]
 ■

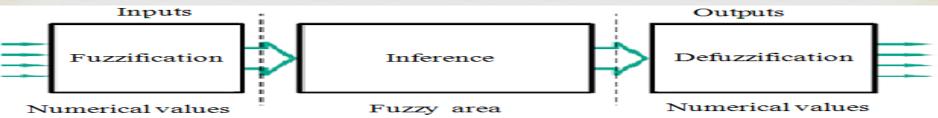
Reviews the literature on optimization techniques

R Issues:


- nowhere fuzzy rules are disclosed
- fuzzy principles may give rise to several combinations of process parameters

Objectives of Project Work

Output parameter: Depth of cut is divided into 11 levels


Development of fuzzy model

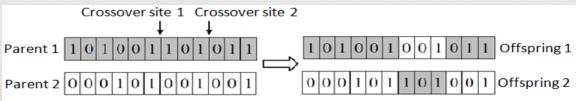
- CS Rule 1:IF WP is VL AND TR is VL AND AFR is VL THEN depth of cut is EL
- C3 Rule 40: IF WP is M AND TR is VH AND AFR is L THEN depth of cut is VEL
- CS Rule 71: IF WP is VH AND TR is VL AND AFR is M THEN depth of cut is EH

Development of fuzzy model

Real Fuzzy model contains

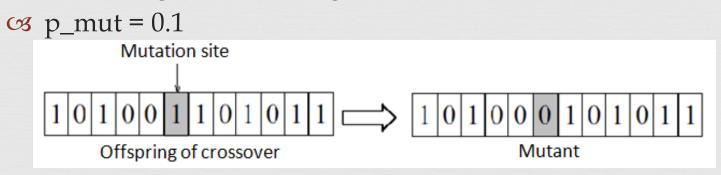
- 🛯 Fuzzification module
 - crisp value to membership value
- Inference module
 - Scans the knowledge base (Knowledge base is formulated in terms of 125 fuzzy inference rules
 - Fuzzy rules act as decision makers
- Of Defuzzification module
 - Output of inference module is fuzzy
 - Need to defuzzify in to a crisp value
 - Use of centroid method

Initial population: generated randomly
 Fitness function: F_i = |e_{max} - e_{string}|
 Reproduction: formation of mating pool
 p_select plays important role


Combination set number	Input parameter values			Fitness	Probability of selecting	Actual	Additional
	WP (MPa)	TR (mm/min)	AFR (g/min)	value F _i	combination, $p_select = \frac{Fi}{Favg}$	count	count
1	257	204	154	13.65	1.55	1	1
2	314	307	70	2.49	0.28	0	0
3	313	117	122	10.81	1.23	1	0
4	335	309	187	20.64	2.34	2	0
5	147	228	192	3.06	0.35	0	0
6	298	307	154	4.42	0.50	0	1
	F _{avg}				Total count	4 +	2 = 6

- Solutions from mating pool are undergoes recombination operators
- Binary values of process parameters are very efficiently and effectively used during recombination operators

101001110	100001100	10001101
334 MPa	268 mm/min	0.141 kg/min


R Crossover:

- ∽ p_cross = 0.9
- 🧭 give a local optimum

Real Mutation:

- avoid any loss of feasible solutions obtained after the crossover operation
- In higher values of p_mut may lead to negative effects in terms of discarding the best strings

Rew mating pool

- If after recombination operators new fitness values are calculated
- combination of process parameters with higher fitness value enter into new mating pool for next generation
- Repeated until feasibility test for all solutions is satisfied.
- Gives several optimal combinations for process parameters
- RR depends on TR

MRR = h x w x TR

Results and Discussions

Water	Water				Deviation of			
	Traverse	flow rate	Deptl	n of cut (mn	predicted depth of			
jet	rate				cut (%)			
pressure	(mm/min)	(kg/min x 10 ⁻³)	Experimental	Reported	Predicted	Reported	Due die te d	
(MPa)		10)	value	value [1]	value	[1]	Predicted	
300	30	21	31	34	33.99	9.00	8.80	
325	30	107.6	45	44	41.15	-2.20	-9.36	
350	30	65.2	43	47	44.36	8.50	3.06	
150	150	90	11	9.38	9.37	-1.72	-1.72	
180	70	30	15	15	15	0.00	0.00	
200	70	110	17	19	18.08	10.50	5.97	
220	70	130	21	22.14	19.59	5.14	-7.20	
Average deviation of predicted depth of cut (%)						4.17	-0.06	

Results and Discussions

Real Fuzzy-genetic approach is illustrated with

population size = 32,

 $p_cross = 0.9$

p_mut = 0.1

user defined error of 0.1 mm

Desired Depth (mm)	Pr Water jet pressure	redicted values Traverse rate	for Abrasive flow rate (kg/min x	Predicted depth of cut (mm)	Experimental Depth of cut (mm)	MRR (mm³/min x 10 ⁻³)
	(MPa)	(mm/min)	(kg/1111 x 10 ⁻³)			
22	300	30	21	22.026	22.09	2.256

Conclusions & Future scope

Real Conclusions:

- G Fuzzy logic is used as decision maker technique
- GA is used as optimization technique
- Suzzy model developed in present work can be used to efficiently predict the depth of cut for a given set of input process parameters
- Predicted and experimental depths of cut are within the user defined tolerance limits

- Allows to consider different objectives
- Can be extended to other materials.
- One can include other input and output parameters depending on the objectives

References

 [1] Aggarwal and Singh (2005), Optimization of machining techniques – A retrospective and literature review, Sadhana, 30(6), 699–711

[2] Chakravarthy and Babu, (2000), A Hybrid Approach for Selection of Optimal Process Parameters in Abrasive Water Jet Cutting, Proc. Instn. Mech. Engrs. **214(B)**, 781-791

[3] Hashish M., (1984), A modeling study of metal cutting with abrasive waterjets, Journal of Engineering Materials and Technology, Transactions of the ASME, **106(1)**, 88-100

[4] Jain and Deb, (2007), Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms, International Journal of Machine Tools & Manufacture, 47, 900–919

