RRB Secunderabad

Junior Engineers Exam Question Papers

(Held on 14-12-2014)

14

CC

SECTION - 1

ENGLISH

- Identify the city which faced large scale destructions due to 'Hudhud' cyclone recently? 1.
 - (A) Chennai
- (B) Vishakhapatnam (C) Kolkata (D) Hyderabad
- The Fundamental Duties of the Indian citizens are incorporated in the following Article of 2. our constitution?
 - (A) Article 21 A
- (B) Article 51 A (C) Article 370 A (D) Article 19 A

- The speed of sound in air is approximately equal to: 3.
 - (A) 3×10^8 m/sec (B) 330 m/sec (C) 5000 m/sec (D) 1500 m/sec

- Hot Wire Instruments read : 4.
 - (A) Peak value
- (B) Average value (C) r. m. s. value (D) None of these

- (5) Strain Gauge is used to convert:
 - (A) Force into displacement
 - Mechanical displacement into change in resistance (B)
 - Electric current into Mechanical displacement
 - (D) Sound Energy into Electric Energy
 - If an object lies in third quadrant, its position with respect to reference planes will be :
 - (A) Infront of V.P., Above H.P.
- Behind V.P., Above H.P. (B)
- (C) Infront of V.P., Below H.P.
- (D) Behind V.P., Below H.P.
- Find the value of $\frac{(768)^3 + (232)^3}{(768)^2 (768 \times 232) + (232)^2}$:

- 1000
- 536 (B)
- (C) 500
- (D) 268
- The Headquarters of West Central Railway is located at :
 - (A) Jabalpur (B) Jaipur
- (C) Allahabad
- (D) Ahmedabad

- (9) If fineness Modulus of sand is 2.5, it is graded as :
 - (A) Medium sand (B) Fine sand (C) Coarse sand

- (D) Very coarse sand

10.	If	logs .	χ =	$\frac{2}{3}$	then	the	value	of 'x'	is	,
-----	----	--------	-----	---------------	------	-----	-------	--------	----	---

	16
(A)	3

(B)
$$\frac{4}{3}$$

A file which	contains	transient	data	to 1	эе	processed	in	combination	with	а	master	file	is
called:													

Sequential file (A)

- Master file (B)
- Random organization file (C)
- Transmission file (D)

- (A) Range
- Size of terminals (C) Pointer (B)
- (D) Scale

System software (A)

Application software (B)

Both (A) and (B) (C)

None of these (D)

Schmitt trigger is also known as: 14.

Sweep circuit

Blocking oscillator (B)

Squaring circuit

Stable multi vibrator

- -18(B)
- (C) = 21

16. Find the value of
$$(2744)^{\frac{1}{3}}$$
:

- (A) 24
- 14
- (C) 34
- (D) 16

- (A) MS Windows (B) MS Word
- (C) MS Excel

(B) MS PowerPoint

Find the missing term of the following series: 18.

BZA, DYC, FXE, _ ? _, JVI.

- (A) HWG
- (B) HUG
- (C) WHG
- (D) GUH

19.	Whi	ich of the followir	ng is bi	iodegradal	ble pol	lutant	?		
	(A)	DDT	(B)	ВНС		(C)	Cotton clot!	i (D)	Mercury
20.	Who	o is the Chief Mir	nister o	f Tamil N	adu ?	(As or	01.11.2014)		
	(K)	Mr. O. Panneer	selvan	1	(B)	Ms.	J. Jayalalitha		
	(C)	Mr. Karunanidl	hi				Dayanidhi M	aran	
21.	With	n the formation o	f Telar	igana, hov	v man	· State	s are there in	our com	itry now ?
			(B)			(C)		(D)	
22.		out the term wh 33, 66, 99, 121, 27			om otl	her ter	ms in the follo	owing :	
	(A)	99	(B)	121	`	JOY	279	(D)	594
23.	Tran	sformer cores are	lamin	ated in or	der to	:			
	(A)	Minimise eddy o	current	loss	(B)	Redu	ice cost		
		Simplify its cons							
24.	Whi	ch one of the follo	wing i	is not a No	oble Ga	as?			
	(A)	Helium	J(B)	Bromine		(C)	Argon	(D)	Neon
25).	For v	which of the follo	wing a	pplication	s, a D.	.C. mo	tor is preferre	ed over a	n A.C. motor ?
	(A)	Variable speed of	operati	on	(B)	High	speed operati	ion	
	(C)	Low speed oper	ation		(D)	Fixed	speed operat	tion	
26.	The	nucleus of an ato	m gene	erally, con	tains :				
	(A)	Protons and Net	utrons		(\mathcal{D})	Proto	ns and Electr	ons	
	(K)	Electrons and N	eutron	S	(D)	Only	Neutrons		
27.	The	language which a	comp	uter can u	nderst	and is	:		
	(A)	High Level Lang	guage		(B)	Mach	ine Language	2	
	(C)	Assembly Langu	iage		(D)	All of	these		
28.	A for	ur stroke petrol ei	ngine t	heoreticall	y opei	ates o	n:		
	(A)	Joule cycle			(B)	Otto	cycle		
	(C)	Brayton cycle			(D)	Bell c	oleman cycle		

CC :	•				17				
29.	Secre	tion of Insulin H	ormoi	ne is by :					
	(A)	Thyroid	(B)	Pituitary		(C)	Adrenal	(D)	Pancreas
(30.)	Iama	Masjid at Delhi	was b	uilt by :					
				Jahangir		(C)	Shah Jahan	(D)	Aurangzeb
~ ~	T 4 * 7 .	1		is also know	en ac	Pod I	Planat 2		
31.		h one of the follo Mercury		Venus	WII 65		Earth	(D)	Mars
	` '	-	, ,						
32.	Who	wrote the book	"Not	Just An Acc	1 1000 5			y ?	
		P.C. Parakh			(B)		ay Baru		
	(C)	Vinod Rai			(D)	Natv	var Singh		
33.	ln sa	nd Moulding, the	e top :	flask is knov	vn as	:			
		Cope		Drag		(C)	Check	(D)	Fillet
2	,	11	And a second	ala na anala	chou	ld bo	loce than:		
(34./	In a	well conditioned	(B)	50°	SHOU	(C)	30°	(D)	45°
	(11)		(10)			(- /		. /	
35.	Find	the value of (1 ± 2140	2 + 3	+4+		+45):		
	(A)	2140	(B)	2070	C	(C)	1035	(D)	1280
36.	If a t	hin rectangular r	olate o	of 60 mm×3	0 mm	is in	clined at an ang	le of 60'	to the Horizontal
501		e, its top view m							
	(A)	Square of 30 mi							
	(B)								
	(C)	Rectangle of 60							
	(D)	Rectangle of 45	mm	C 50 Hill Size					
37.	Red	rot is a plant dis	ease v	vhich affects	3 :				
		Wheat		Rice		(C)	Sugarcane	(D)	Cotton
7.0	D:	(D' and Gill a table	in 26	house and r	sino "C)' can	fill this tank in	45 hour	E If both the nines
38.	are o	pened simultane	ously	, then how	much	time	will be taken to	fill this	s. If both the pipes tank?
				1					
	(A)	20 hours	(B)	2 hour	'S	(C)	9 nours	(D)	42 nours
					112	A	ins at Dheets 2		
39.		hworm belongs t			HOWH		ımai Phyla ? Annelida	(D)	Protozoa
	(A)	Arthropoda	(B)	Mollusca		(C)	Amichea	(12)	

					18				CC
40.	Whe com wor	plete this work i	an we in 12	ork together days then i	, they n hos	comp v mai	olete a work in 4 ny days Mohan	days. alone	If Ram alone can can complete this
	(A)	10 days	(B)	8 days	,	(C)	6 days	(D)	16 days
41.	A sin	mply supported blength. The max	eam imum	of length L bending m	is Ioa omen	ded w t will	ith a uniformly be:	distrib	uted load of ω per
	(A)	$\frac{\omega L^2}{4}$	(B)	$\frac{\omega L^2}{8}$		(C)	$\frac{\omega L^2}{2}$	(D)	ωL^2
		are provided on i		ransferring :	surfac	e in o	rder to increase	:	
	Á)	Heat transfer ar	ea		(B)	Heat	transfer coeffici	ent	
	(C)	Temperature gra	adient	t	(D)	Mech	nanical strength	of the	equipment
43.		perfectly elastic bo						:	
	(A)	zero	(B)	0.5	·	-(C)	1.0	(D)	0.25
4 4.	Whic	ch one of the follo	wing	is not a sca	lar qu	antity	?		
	(A)	Volume	(B)	Mass	,	(2)	Force	(D)	Length
45.	Find	the average of al	l prin	ne numbers	betwe	en 30	and 50 :		
	(A)	48	(B)	39		(e)	39.8	(D)	38
46.		examination, 35% he examination ?	% of th	ne students p	passed	l and	455 failed. How	many	students appeared
	(A)	700	(B)	1300		(C)	845	(D)	1250
47,	Find	the L.C.M. of 148	8 and	185.					
//	(A)	the L.C.M. of 148 680	(B)	740		(C)	2960	(D)	3700
48.	A 4 -	pole, 1500 r.p.m	. alter	nator will g	enera	te e.m	.f. at :		
	(A)		(B)	60 Hz		(C)	40 Hz	(D)	50 Hz

In an examination, a student gets 4 marks for every correct answer and loses 1 mark for

every wrong answer. If he attempts in all 60 questions and secures 130 marks, then find the

(C) 36

number of questions he attempted correctly.

(B) 48

49.

(A) 42

- Ampere second is the unit of: 50.
 - (A) Charge (B) Power (C) Voltage
- (D) Energy
- One side of a rectangular field is 15 metres. The length of diagonal of this rectangular field is 51. 17 metres. Find the area of this rectangular field.

- (A) 120 m^2 (B) 60 m^2 (C) 255 m^2 (D) $144 \frac{1}{2} \text{ m}^2$
- The resultant of two forces P and Q acting at an angle θ , is given by : 52.
 - (A) $\sqrt{P^2+Q^2+2PQ}$ tane
- (B) $\sqrt{P^2+Q^2+2PQ\sin\theta}$
- $\sqrt{(\mathcal{Q})} \sqrt{P^2 + Q^2 + 2PQ \cos\theta}$
- (D) $P+Q+2PQ \tan \theta$
- Power Loss in a resistor is given by : 53.

- (A) $P = V^2R$ (B) $P = \frac{V}{I}$ (C) $P = \frac{I^2}{R}$ (D) $P = \frac{V^2}{R}$
- 54. If the cost of 'x' metres of wire is 'd' rupees, then what is the cost of 'y' metres of same wire?
 - (A) $\frac{yd}{x}$
- (B) $\frac{xd}{y}$

- Primary storage in computer terminology refers to:
 - (A) Hard Disc Drive
 - Random Access Memory (RAM)
 - Read Only Memory (ROM)
 - The storage device where the operating system is stored
- Which of the following flip-flops is used as Latch?

 - (A) JK flip-flop (B) RS flip-flop (C) D flip-flop
- (D) T flip-flop
- ____ will translate the complete programme at once from a high level language to the 57. machine language.
 - (K) Compiler
- Assembler (B)
- (C) Joystick
- (D) Bus

- Which of the following is a prime number? 58.
 - (A) = 33

(C) 93

97 (D)

								0.0
59.	The	total number of	bones	in the average ac	dult h	uman skeleton	is:	
		350	46)	206		115	(D)	540
							. ,	
60.	Wa	ter has its maxin	num de	ensity at :				
		0°C			(C)	50°C	(DX	4°C
					(0)	00 C	اطل	4 C
61.	Whi	ich of the follow omobile Engines	ing pro	cesses is generall	y used	d for mass proc	luction o	f connecting rod of
				Cold Heading	(C)	Forging	(D)	Spinning
62.	Wha	at is the General	formu	la of Alkanes ?				
	(A)	C_nH_{2n+2}	(B)	C_nH_{2n}	(C)	C_nH_{2n-2}	(D)	C_nH_{2n+4}
63.	A ga	ate in which all i	inputs i	must be high to g	ret a lo	w output is:		
				AND gate			(DK)	NAND gate
	, ,		(-)	gate	(0)	14OK gate	(10)	NAND gate
64.	Whi	ch of the followi	ing Am	plifiers produces	the le	east distortion ?	,	
				Class B		Class AB		Class C
65.	Cycl	o converter con	verts :					
		AC to DC						
		DC to AC						
	(C)	A fixed AC to	a varia	ble magnitude Λ	C			
				ble magnitude D				
	, ,			or or of the control				
66.	Sepa	ration of water of	or sand	or cement from	a fres	hly mixed conc	roto is k	norum ac :
				Creeping			(D)	
	(- /	8-8-1	(0)	creeping	(0)	biceamg	(D)	Flooding
67.	The	value of binary 1	1111 is					
		23			(C)	24	40)	24 1
	(- 1)	_	(5)	- 1	(C)	2	40)	2,-1
68.	The l	oad which does	not ch	ange its magnitue	de and	I position with	timo ie e	ralled .
				Dynamic load				
	(11)	Sire road	(D)	Dynamic load	(C)	стеер юац	(0)	Dead load
69.	Find	the missing tern	n of the	following series				
		27, 16,?, 36,		tonowing series				
	(A)		(B)	216	(C)	6.1	(DV	125
	()		(2)	210	(C)	64	. [125

70. T	The	entropy	of	universe	tends	to	be	
-------	-----	---------	----	----------	-------	----	----	--

- (A) Minimum
- Zero
- Average (C)
- (D) Maximum

Ammonia is prepared commercially by the : 71.

- (A) Oswald process (B) Hall process
- (C) Contact process (D) Haber process

A bullet is fired vertically upwards with a velocity of 196 m/sec. What is the maximum height reached by the bullet? (Assuming $g = 9.8 \text{ m/sec}^2$)

- (A) 1960 m (B) 196 m
- (C) 980 m
- (D) 490 m

73. If
$$\frac{x}{y} = \frac{6}{5}$$
, then find the value of $\frac{x^2 + y^2}{x^2 - y^2}$:

- (A) 11
- $(B) \frac{61}{11}$

(D) = 6

Goutam Buddha delivered his first sermons at : 74.

- (A) Kusinagar
- Sarnath (B)
- Pataliputra (C)
- (D) Vaishali

The 'Quit India Movement' was launched in the year: 75.

- (A) 1920 A.D.
- (B) 1930 A.D. (E) 1942 A.D.
- 1946 A.D. (D)

'When a body is wholly or partially, immersed in a fluid, it experiences an upthrust equal to the weight of the fluid displaced'. This is known as :

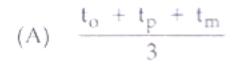
(A) Pascal's principle

Archimedes principle (B)

Stoke's law (C)

(D) Newton's Laws of Motion

Disinfection of drinking water is done to remove : 77.


- (A) Odour (B) Bacterias
- Turbidity (C)
- (D) Colour

- (A) Perspective
- (B) Oblique
- Orthographic
- (D) None of these

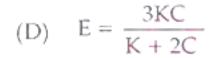
The United Nations Day (U.N.Day) is celebrated every year on : 79.

- (A) Dec 26
- Nov 14 (B)
- (C) Sept 5

80. If to, tp and tm are the optimistic, pessimistic and most likely time estimates of an activity respectively, then the expected time 't' of the activity will be:

(B)
$$\frac{t_o + t_p + 3t_m}{5}$$

$$(C) \quad \frac{t_o + t_p + 2t_m}{4}$$


(D)
$$\frac{t_0 + t_p + 4t_m}{6}$$

Choose the option which correctly shows the relationship between Modulus of Elasticity (E); Modulus of Rigidity (C) and Bulk Modulus (K):

(A)
$$E = \frac{KC}{K + C}$$

$$(B) \quad E = \frac{2KC}{2K + C}$$

Who is the winner of Mens Singles Title in Tennis in US open, 2014?

(A) Roger Federer

Kei Nishikori (B)

(C) Marin Cilic

- (D) Rafael Nadal
- The elements which have same mass number but different atomic numbers are known as:

 - (A) Isotones (B) Isobars
- (C) Isotopes (D) Halogens
- Weld spatter is a/an: 84.
 - (A) Flux
- Electrode (B)
- (C) Welding defect (D) None of these

- A CRO can display :

- (A) D.C. signals only
 (B) A.C. signals only
 (C) Both D.C. and A.C. signals
 (D) Time invariant signals
- The pollutant responsible for ozone holes is:
 - (A) CO₂
- (B) CO
- (C) SO₂
- (D) CFC
- 87. A transformer has 1000 primary turns. It is connected to 250 volts A.C. supply. Find the number of secondary turns to get secondary voltage of 400 volts.
 - 1600
- (B) 625
- (C) 100
- (D) 1250
- Lokpriya Gopinath Bardoloi International Airport is located at :
 - (A) Jaipur
- Bangalore (B)
- (C) Guwahati
- (D) Hyderabad

89.	Time	constant	of	а	series	R-L	circuit	is	,

- (A) LR seconds $\frac{L}{R}$ seconds
- (C) L²R seconds (D) LR² seconds

Who wrote 'Indica'? 90.

- (A) Kautilya
- Kalidasa (B)
- (C) Shudraka
- Megasthenes (D)

Who is the winner of Nobel Prize, 2014 in the field of Economics? 91.

(A) Patrick Modiano

(B) Malala Yousafzai

Jean Tirole

(D) Kailash Satyarthi

A cyclotron is a :

- (A) Bunch of Gamma Rays
- High Frequency Oscillator
- Particle Accelerator
- None of these

A man buys an article for ₹ 490 and sells it for ₹ 465.50. Find his loss percentage. -93.

- (A) = 4%

- (D) 5.5%

'The Servants of India Society' was founded by : (94).

- (A) Jyotiba Phule
- (B) G.K. Gokhale
- B.G. Tilak (C)
- B.R. Ambedkar (D)

Find the angle between the hour hand and the minute hand of a clock when the time is 10.25 hours i.e. 25 minutes past 10 ?

- (A) 180°
- (B) 165°
- (C) $162\frac{1}{2}^{\circ}$
- (D) $152\frac{1}{2}^{\circ}$

Hopkinson's test for D.C. motors is conducted of : 96.

- (A) Low Load
- (B) Half Load
- Full Load (C)
- No Load (D)

The dimensions of a brick are $10 \text{ cm} \times 4 \text{ cm} \times 3 \text{ cm}$. What is the total surface area of this 97. brick?

- (A) 82 cm²
- (B) 164 cm²
- (C) 120 cm²
- (D) 180 cm²

To be eligible for elected as President, a candidate must be :

- (A) Over 25 years of age
- Over 30 years of age (B)
- Over 35 years of age
- Over 60 years of age (D)

- 99. The reduced bearing of a line is N 87° W. Its whole circle bearing is :
 - (A) 273°
- (B) -3°

- (C) 93°
- (D) 87°
- 100. Arrange the fractions $\frac{3}{5}$, $\frac{4}{7}$, $\frac{8}{9}$ and $\frac{9}{11}$ in their descending order :
 - (A) $\frac{8}{9} > \frac{9}{11} > \frac{3}{5} > \frac{4}{7}$

(B) $\frac{9}{11} > \frac{8}{9} > \frac{4}{7} > \frac{3}{5}$

(C) $\frac{3}{5} > \frac{4}{7} > \frac{8}{9} > \frac{9}{11}$

- (D) $\frac{4}{7} > \frac{8}{9} > \frac{3}{5} > \frac{9}{11}$
- 101. The pressure exerted on the walls of a container by a gas is due to the fact that Gas molecules:
 - (A) Stick to the walls of the container
 - (B) Lose their kinetic energy
 - (C) Get accelerated towards the wall
 - (D) Change their momentum due to collision with the wall.
- 102. The thermal diffusivity of a substance is given by :
 - $(A) = \frac{K\rho}{C}$
- (B) $\frac{K}{\rho C}$
- (C) $\frac{KC}{\rho}$
- (D) $\frac{\rho C}{K}$

[Where $K = Thermal conductivity; \rho = Mass density; C = Specific heat]$

- 103. Boyle's law states that :
 - (A) The pressure of a gas varies directly with temperature at constant volume i.e. $P\alpha T$.
 - The product of pressure and volume of a given mass of a gas is constant at constant temperature i.e. PV = constant.
 - (C) The volume of a gas varies directly with temperature at constant pressure i.e. $V\alpha T$.
 - (D) The pressure of a gas varies directly with volume at constant temperature i.e. $P\alpha V$.
- 104. At what temperature, both Celsius and Fahrenheit scales will show the identical readings?
 - (A) 100°
- (B) 0°
- (C) -40°
- (D) 40°
- 105. A capacitor stores 1 coulomb at 10 volts. Its capacitance is (f = farad):
 - (A) 1 f
- (B) 10 f
- (C) 0.1 f
- (D) 0.01 f
- 106. Who is the Chairperson of National Commission for Women in India? (As on 01.11.2014)
 - (A) Jayanti Patnaik

(B) Girija Vyas

(C) Mamta Sharma

(D) Lalitha Kumaramangalam

CC					25				
107.	In a 'MIL		guage,	'HAND' is	writt	ten as	'SZMW', then	what w	ill be the code of
	(A)	ORNP	(B)	PNRO		(9)	NROP	(D)	RNOP
108.	The f	famous chinese pi	ilgrim	'Hieun Tsa	ng' vi	sited I	ndia during the	e reign (of:
	(A)	Harshavardhan			(B)	Chan	dragupta II		
	(C)	Ashoka			(D)	Kanis	shka		
109.	Whe	n an object is cut onal view of the c	by a s	section plane is obtained	e, para in :	allel to	H.P. and perpe	endicula	nr to V.P., then the
	(A)	Top view	(B)	Front view	,7	(C)	Left side view	(D)	Right side view
110.	A co	nductor of axial netic field of strei	lengt! igth ()	h 30 cms ca).4 tesla. Wl	rries hat is	a curre	ent of 100 A ar	nd lies a	at right angle to a
				12 N			1.2 N	(D)	0
M.	The	property of a mat	terial	by which it	can b	e rolle	d into sheets is	called :	
							Ductility		Malleability
112.	'Gid	dha' is a folk dan	ce of	:					
112.				Uttar Prac	desh	(C)	Assam	(D)	Maharashtra
113	lden	itify the disease w	hich	is caused di	ie to d	leficie	ncy of Protein ?		
110.		Scurvy	(B)				Night-Blindne		Kwashiorkor
	. 7		1 /			~ "			

With which of the following, the intrinsic semi conductor Silicon be doped in order to obtain p-type semi-conductor?

(A) Boron

(B) Phosphorus

(C) Gallium

(D) None of these

115. Which of the following is a universal gate?

(A) AND

(B) NAND

(C) OR

(D) NOR

116. The length of two trains are 140 m and 160 m respectively. If they run at the speed of 60 km/h and 40 km/h respectively in opposite directions on parallel tracks, then find the time in which they will cross each other.

(A) 10 sec

(B) 10.8 sec (C) 9 sec

(D) 9.6 sec

117.	coil	to D.C. ?						tor in its armature
	(A)	Slip ring	(B)	Rectifier	(92)	Commutator	(D)	None of these
118).	If 1st	January, 2014 w	as We	dnesday, then 29	9 th Dec	cember, 2014 will	be:	
	(A) ^r	Thursday	(B)	Monday	(C)	cember, 2014 will Saturday	(D)	Friday
119	A tri	ac is a :						
	(A)	Two terminal bi	i-direc	tional switch				
	(B)	Three terminal l	bi-dire	ectional switch				
	(C)	Two terminal ur	ni-dire	ectional switch				
	(D)	Three terminal	uni-di	rectional switch				
	60° v	vith the ground. th of this ladder ?	The f	oot of the ladder	is 4.6	metres away froi	m the	makes an angle o wall. What is the
	(A)	9.2 m	(B)	2.3 m	(C)	6.9 m	(D)	7.8 m
121.	Gale	na is an ore of :						
	(A)	Lead	(B)	Copper	(C)	Aluminium	(D)	Iron
	these	e two numbers.						4. Find the ratio o
	(A)	11:9	(B)	11:18	(C)	22:9	(D)	17:13
123.	The	BIS code which d	eals v	vith steel structur	es is :			
	(A)	BIS: 456	(B)	BIS: 800	(C)	BIS: 875	(D)	BIS: 1893
124.	triar	igle ?						of this equilatera
	(A)	96 cm	(B)	$4\sqrt{6}$ cm	JC)	12√6 cm	(D)	6√6 cm
125.	Whe	en we open an int World Wide We		site, we see 'ww (B)		What is the full fo ld Wide Word	rm of	'www' ?
	(C)	Words Wise We		(D)		e of these		
	(-)	TYOIUS THISE TYE		(12)	1.4011	c or more		

TSD001414

126. The term 'Operating System' me	126.	The	term	'O:	perating	System'	means	
-------------------------------------	------	-----	------	-----	----------	---------	-------	--

- A set of programmes which controls computer working
- The way a computer operator works (B)
- Conversion of high level language into machine level language (C)
- (D) None of these

127. If a point moves in a plane in such a way that the sum of its distances from two fixed points is constant, the curve so traced is called:

- (A) Parabola (D) Ellipse (C) Hyperbola (D) All of these

128. A byte is group of:

- (A) 2 bits
- (B) 4 bits (B) 8 bits
- (D) 16 bits

129. Who is the President of China? (As on 01.11.2014)

- (A) Li Keqiang (B) Xi Jinping (C) Shinzo Abe
- (D) Hu Jintao

130. Who is the speaker of present Lok Sabha? (As on 01.11.2014)

- (B) Smt. Sumitra Mahajan (B) Smt. Sushma Swaraj

- (C) Smt. Meira Kumar
- (D) None of these

131. Ravi runs 200 metres in 24 seconds. Find his average speed:

- (A) 20 km/h

- (B) 24 km/h (C) 28.5 km/h (D) 30 km/h

132. The relationship between Bulk density (γ) , Dry density (γ_d) and water content (ω) for soil is:

- (A) $\gamma = \gamma_d (1 + \omega)$ (B) $\gamma_d = \gamma (1 + \omega)$ (C) $\gamma = \frac{\gamma_d}{1 + \omega}$ (D) $\gamma = \gamma_d (1 \omega)$

133. Which country won the FIFA world cup, 2014 in Football?

- (A) Germany
- (B) Argentina (C) Brazil
- (D) France

134. Which of the following is not a cold working process?

- (A) Extrusion
- Slitting (B)
- (C) Blanking
- (D) Lancing

. 135. Pointing to a man in a photograph, Asha said, "His mother's only daughter is my mother". How is that man related to Asha?

- (A) Brother
- (B) Maternal Uncle (C) Grand father (D) Father

136.		t is 15% of 34 kg						
	(A)	3.4 kg	(B)	3.75 kg	(C)	4.50 kg	ND)	5.10 kg
137.		in is younger tha	n Rah	ul by 4 years. If	their a	ages are in the ra	tio of 7	7 : 9, then how ol
	(X)	14 years	(B)	21 years	(C)	18 years	(D)	25 years
138.	Which (A)	ch one of the foll Voltmeter	owing (B)	instruments will Ammeter	be us (C)	ed for measuring Ohmmeter	g electr (D)	ic current ? Wavemeter
139.	If 2 ²	$n-1 = \frac{1}{8^{n-3}}$, the	n the	value of 'n' is :				
	(A)	3	(B)	2	(C)	0	(D)	- 2
140.		ength of a bar is in produced in th		es. It extends by 2	2 mm	when a tensile fo	rce F is	applied. Find th
	(A)	0.002 L	(B)	$\frac{2}{L}$	(C)	0.2 L	(D)	L 0.002
141.	Larg	e scale deforestat	tion de	ecreases :				
	(A)	Soil Erosion	(B)	Rain fall	(C)	Drought	(D)	Global warming
142.	Zero	th Law of therm	odyna	mics forms the b	asis o	f mea	asuren	nent.
	(A)	Pressure	(B)	Temperature	(C)	Work	(D)	Momentum
143)	BOD	(Bio Chemical C	xyger (B)	Demand) of safe	drinl	king water must 100 ppm	be : (D)	200 ppm
				ompression memb				1 1
		Effective least radius of		^		ctual length nent of inertia		
	(C)	Moment of iner		(D)		ctual length		

Actual length

(A) Corbett National Park

145. Which National Park is known for the 'Asiatic Lions'?

(B) Kanha National Park

Radius of gyration

In which of the following movement did Gandhiji make the first use of Hunger Strike as a weapon ?										
(A) Ahmedabad strike, 1918					Rowlatt Satyagraha, 1919					
(C) Swadeshi Movement, 1905				(D)						
Find the simple interest on $\overline{<}$ 4800 at the rate of $8\frac{1}{2}\%$ per annum for a period of										
-		(B)	₹ 816		(C)	₹ 918	(D)	₹ 990		
Glob	al warming is c	aused J	2y :							
(A)	N_2	(B)	CO_2		(C)	Ozone	(D)	None of these		
How many terms are there in the following series? 201, 208, 215,, 369.										
			25		(C)	24	(D)	23		
The Indian Standard Time (I.S.T.) is ahead of Greenwich Mean Time (G.M.T.) by :										
(A) 6 hours					5 hours					
(C) 6 hours 30 minutes				(D)						
	(A) (C) Find 2 yea (A) Glob (A) How 201, (A)	 (A) Ahmedabad s (C) Swadeshi Mos Find the simple in 2 years 3 months. (A) ₹ 796 Global warming is c (A) N₂ How many terms ar 201, 208, 215,, (A) 26 The Indian Standard (A) 6 hours 	weapon? (A) Ahmedabad strike, 1 (C) Swadeshi Movement. Find the simple interest 2 years 3 months. (A) ₹ 796 (B) Global warming is caused by (A) N ₂ (B) How many terms are there 201, 208, 215,, 369. (A) 26 (B) The Indian Standard Time (A) 6 hours	 (A) Ahmedabad strike, 1918 (C) Swadeshi Movement, 1905 Find the simple interest on ₹ 4800 2 years 3 months. (A) ₹ 796 (B) ₹ 816 Global warming is caused by: (A) N₂ (B) CO₂ How many terms are there in the followant for the f	weapon? (A) Ahmedabad strike, 1918 (B) (C) Swadeshi Movement, 1905 (D) Find the simple interest on ₹ 4800 at the 2 years 3 months. (A) ₹ 796 (B) ₹ 816 Global warming is caused by: (A) N ₂ (B) CO ₂ How many terms are there in the following second 201, 208, 215,, 369. (A) 26 (B) 25 The Indian Standard Time (I.S.T.) is ahead of (A) 6 hours (B)	weapon? (A) Ahmedabad strike, 1918 (B) Row (C) Swadeshi Movement, 1905 (D) Char Find the simple interest on ₹ 4800 at the rate 2 years 3 months. (A) ₹ 796 (B) ₹ 816 (C) Global warming is caused by: (A) N ₂ (B) CO ₂ (C) How many terms are there in the following series 201, 208, 215,, 369. (A) 26 (B) 25 (C) The Indian Standard Time (I.S.T.) is ahead of Gree (A) 6 hours (B) 5 hor	weapon? (A) Ahmedabad strike, 1918 (B) Rowlatt Satyagn (C) Swadeshi Movement, 1905 (D) Champaran Saty Find the simple interest on ₹ 4800 at the rate of $8\frac{1}{2}\%$ 2 years 3 months. (A) ₹ 796 (B) ₹ 816 (C) ₹ 918 Global warming is caused by: (A) N ₂ (B) CO ₂ (C) Ozone How many terms are there in the following series? 201, 208, 215,, 369. (A) 26 (B) 25 (C) 24 The Indian Standard Time (I.S.T.) is ahead of Greenwich Mean (A) 6 hours (B) 5 hours	weapon? (A) Ahmedabad strike, 1918 (B) Rowlatt Satyagraha, 1919 (C) Swadeshi Movement, 1905 (D) Champaran Satyagraha, 1 Find the simple interest on ₹ 4800 at the rate of $8\frac{1}{2}$ % per annum 2 years 3 months. (A) ₹ 796 (B) ₹ 816 (C) ₹ 918 (D) Global warming is caused by: (A) N ₂ (B) CO ₂ (C) Ozone (D) How many terms are there in the following series? 201, 208, 215,, 369. (A) 26 (B) 25 (C) 24 (D) The Indian Standard Time (I.S.T.) is ahead of Greenwich Mean Time (G.S. (A) 6 hours (B) 5 hours		

-000-