NME-303 : THERMODYNAMICS L T P 2 1 0 ## Unit - I: **Fundamental Concepts and Definitions:** Introduction- Basic Concepts: System, Control Volume, Surrounding, Boundaries, Universe, Types of Systems, Macroscopic and Microscopic viewpoints, Concept of Continuum, Thermodynamic Equilibrium, State, Property, Process, Exact & Inexact Differentials, Cycle Reversibility Quasi – static Process, Irreversible Process, Causes of Irreversibility Energy and its forms, Work and heat (sign convention), Gas laws, Ideal gas, Real gas, Law of corresponding states, Dalton's law, Amagat's law, Property of mixture of gases. **Zeroth law of thermodynamics:** Concept of Temperature and its' measurement, Temperature scales. **First law of thermodynamics:** Thermodynamic definition of work, Displacement work and flow work, , Displacement work for various non flow processes, Joules' experiment, First law analysis for closed system (non flow processes), Internal energy and enthalpy. Limitations of first law of thermodynamics, PMM-I. ## Unit - II: **First law of thermodynamics applied to open systems**, Steady flow systems and their analysis, Steady flow energy equation, Boilers, Condensers, Turbine, Throttling process, Pumps etc. Analysis of unsteady processes such as filling and evacuation of vessels with and without heat transfer. **Second law of thermodynamics:** Thermal reservoirs, Energy conversion, Heat engines, Efficiency, Reversed heat engine, Heat pump, Refrigerator, Coefficient of Performance, Kelvin Planck and Clausius statement of second law of thermodynamics, Equivalence of the two statements. Reversible and irreversible processes, Carnot cycle and Carnot engine, Carnot theorem and it's corollaries, Thermodynamic Temperature Scale, PMM-II. ## Unit - IV **Properties of steam and Rankine cycle:** Pure substance, Property of Pure Substance (steam), Triple point, Critical point, Saturation states, Sub-cooled liquid state, Superheated vapour state, Phase transformation process of water, Graphical representation of pressure, volume and temperature, P-T & P-V diagrams, T-S and H-S diagrams, use of property diagram, Steam-Tables & Mollier chart, Dryness factor and it's measurement, processes involving steam in closed and open systems. Simple Rankine cycle. **Introduction to IC engines:** Compression Ignition engines, Spark Ignition engines, 2 stroke and 4 stroke engines, Performance parameters of IC engine, Heat balance sheet. 2 5 3 1 3 2 4